Pless, D.;and Luger, G., "EM Leaming of Product Distributions in a First-Order Stochastic Logic Language." Artificial

Intelligence and Soft Computing: Proceedings of the IASTED International Conference. IASTED/ACTA Press, 2003.

EM Learning of Product Distributions in a First-Order
Stochastic Logic Language

Daniel Pless and George Luger
Department of Computer Science
University of New Mexico
{dpless, luger} @cs.unm.edu

Abstract

We describe a new logic-based stochastic mod-
eling language called Loopy Logic. It is an ex-
tension of the Bayesian logic programming ap-
proach of Kersting and De Raedt [2000]. We
specialize the Kersting and De Raedt formalism
by suggesting that product distributions are an.
effective combining rule for Horn clause heads.
We use a refinement of Pearl’s loopy belief
propagation [Pearl, 1998] for the inference algo-
rithm. We also extend the Kersting and De Raedt
language by adding learmable distributions. We
propose a message passing algorithm based on
Expectation Maximization [Dempster et al,
1977] for estimating the learned parameters in
the general case of models built in our system.
We have also added some additional utilities to
our logic language including second order unifi-
cation and equality predicates.

1 Introduction

Several researchers [Kersting and De Raedt, 2000; Ngo
and Haddawy, 1997; Ng and Subrahmanian, 1992] have
proposed forms of first-order logic for the representation
of probabilistic systems. In their paper “Bayesian Logic
Programs”, Kersting and De Raedt [2000] extract a par-
ticularly elegant kernel for developing probabilistic logic
programs. They replace Homn clauses with conditional
probability formulas. For example, instead of saying that
x Isimpliedbyy and z (x :- vy, =z)they write that
x is conditioned on y and z (x | <y, =z). They then
annotate these conditionz] expressions with the appropri-
ate probability distributions. In two valued logic, every
symbol is either true or £alse. To support variables
that can rapge over more than two values, they allow the
domain of the logic to vary by predicate symbol.
Kersting and De Raedt allow some predicates to range
over other sets such as {red, green, blue}.

Ngo and Haddawy [1997] construct a logic-based lan-
guage for describing probabilistic knowledge bases.
Their knowiedge database consists of a set of sentences
giving a conditional probability distribution and a context
under which this distribution helds. Such context rules do

not appear in the language developed by Kersting and De
Raedt [2000]. Both of these papers propose using Baye-
sian networks for inference. In our approach we construct
Markov random fields for inference (Section 3).

Ng and Subramanian {1992] have a well developed
formalism for probabilistic logic. Their system represents
ranges of probabilities and provides rules for propagating
these ranges. through a probabilistic logic program. A
simple restriction to a range of probability values is in-
herently non-Bayesian in nature. In a Bayesian frame-
work, uncertainty in the value of a probability is handled
through higher order probabilities. Ng and Subrahma-
nian’s declarative language consists of sentences that
contain homn clauses with terms that are annotated with
probability ranges. The terms in the clauses are two val-
ved. If the terms in the body are provably true, then the
head is true with a probability bounded by the given
range. Ng and Subrahmanian also show how to prove
queries through PROLOG style SL.D tree construction.

In a related approach, Friedman ez al. {1999] develop a
formalism based on the entity-relationship model that
underlies most databases. This results in a logic.that in
some ways is more restrictive than that of Kersting and
De Raedt [2000], but which allows second order aggre-
gation functions.

Friedman et ai. [1999] and Ngo and Haddawy [1997]
can be viewed as extensions to the kernel extracted by
Kersting and De Raedt [2000]. Qur approach to prob-
abilistic logic and inference further extends the language
of Kersting and De Raedt by supporting product disiri-
butions and leamning. Product distributions have been
found to be .an effective way of representing stochastic
models for domains such as handwriting recognition
{Mayraz and Hinton, 2000].

We have fully implemented our “Loopy Logic” prob-
abilistic inference system. We have tested it in some
standard domains such as Bayesian networks and Hidden
Markov Models. Although the trials so far are on simple
cases, we have evaluated the full functionality of the lan-
guage including its ability to do parameter estimation or
learning.

In the next section of this paper we describe our new
language. In Section 3 we present inference through the
construction of Markov fields and the use of loopy belief

propagation. In Section 4 we show how the same struc-
ture can be used for Expectation Maximization (EM)
style parameter updates. In Sections 5 and 6 we demon-
strate our language through examples of a Hidden
Markov Model and digital circuit diagnosis. Fipally, we
present conclusions and future work in Section 7.

2 L.anguage Description

We follow Kersting and De Raedt {2000] in the basic
structure of our langnage. A sentence in the language is
of the form head | body,, body, -, body, =
[pi, P2, =, Pml. The size of the conditional prob-
ability table (m) at the end of the sentence is equal to the
arity (number of states) of the head times the product of
the arities of the body. The probabilities are naturally
indexed over the states of the head and the clauses in the
body, but are shown with a single index for simplicity.
For example, suppose x is a predicate that is valued over
{red, green, bIue} and y is boolean. P(x|y) is defined
by the sentence x | y = {[0.1, 0.2, 0.7],
[0.3, ©.3, 0.411, here shown with the structure
over the states of x and vy.

Terms (such as x and y) can be full predicates with
structure and PROLOG style variables. For example, the
sentence a(X) = [0.5,0.5] indicates that a is uni-
versally equally probable to take either of two values.
The underline character ()} is used, as in PROLOG, to
denote an anonymous variable. Also, as in PROLOG, the
period is used for statement termination. We indicate the
domain of terms with set notation. For example, a
{true, false} indicates that a is either true or
false. We include a shorthand in our language for sin-
gular distributions. To indicate that a variable has a de-
terministic value, for example, if a is true, then one can
saya = trueratherthana = [1.0, 0.0].Wealso
allow similar shorthand notation within larger structured
distributions. ‘

If we want a query to be able to unify with more than
one rule head, some form of combining function is
needed. Kersting and De Raedt [2000] allow for general
combining functions. In our language, we restrict this
combining function to one that is simple, useful, and
works well with our inference algorithm. Our choice for
combining sentences is a product distribution. For exam-
ple, suppose we have two simple rules (facts) about some
Boolean predicate a and one says that a is true with
probability 0. 4, the other says it is true with probabil-
ity 0. 7. The resulting probability for a is proporticnal to
the preduct of the two. Thus a is true proportional to
0.4 * 0.7 and a is false proportional to 0.6 * 0.3. Noz-
malizing, a is true with probability of about 0.61. Thus
the overall distribution defined by a database in our lan-
guage is the normalized product of the distributions de-
fined for all the sentences.

One advantage of using the product rule for defining
the resulting distribution is that observations and prob-
abilistic rules are now handled uniformly. An observation
is represented by a simple fact with a probability of 1.0

for the variable to take on the observed value. Thus 2 fact
is simply a Horn clause with no body and a singular
probability distribution, i.e., all the state probabiiities are
zero except for a single state.

We extend the basic structure of our probabilistic logic
language in a number of ways. First, we allow second
order terms, 1.e., we can use variables for the function
symbol in predicates. A useful example of this occurs
with Boolean functions. If we have a group of predicates
whose domain is {true, false} we can create a gen-
eral oxr predicate:

oxr(X,Y) | X
(({1.0,
({1.0,

, X
0.0], (2.0, 0.0},
0.0, {0.¢, 1.0111.

Here X and Y in the body of the clause are higher order
predicates. Now if we have two arbitrary predicates rep-
resenting Boolean random variables, say a{n) and
bim,g), we can form the predicate or{a{n),
b(m,qg)) to get a random wvariable that is distributed
according to the logical “or” of the two previous vari-
ables.

Our probabilistic logic language also supports simple
Boolean equality predicates. These are denoted by angle
brackets <». For example, if the predicate a (n) is de-
fined over the domain {red, green, blue} then
<a{n) = greens is a wvarigble over {true,
false} with the obvious distribution. That is, the predi-
cate is true with the same probability that a{n)is
green and is false otherwise.

A further addition to our logic language is parameter
fitting, i.e., learning. An example of a statement that in-
dicates a learnable distribution is a (X) = A. The capi-
tal “A” indicates that the distribution for a (X) is to be
fitted. The data for this is obtained from the facts and
rules in the database itself. To specify an obsetvation,
one adds a fact to the database in which the variable X 1is
bound. For example, suppose that we have the rule above
and we add a set of five observations (the d;¢) to give the
following database:

a{x) = I,

a{dl) = true.
a(d2) = false.
a(d3) = false.
a{d4) = true.
a(ds) = true.

In this case we have a single learnable distribution and
five completely observed data points. The resulting dis-
tribution for a will be true 60% of the time and false
40% of the time. In this case the variables at each data
point are completely determined. In general, this is not
necessarily so, since there may be learnable distributions
for which there are no direct observations. But a distri-
bution can be inferred in the other cases and used to es-
timate the value of the adjustable parameter. In essence,

this provides the basis for an Expectation Maximization
(EM) style algorithm [Dempster et al., 1977] for simulta-
neously inferring distributions and estimating the learn-
able parameters (Section 4).

Learning can also be applied to conditional probability
tables, not just to variables with simple prior distribu-
tions. Learnable distributions can also be parameterized
with variables just as any other logic term. For example,
the rule rain (X, City) | season(X, City) =
R{City} indicates that the probability distribution for
rain depends on the season and varies by city.

Similar to [Ngo and Haddawy, 1997], we support
meta-predicates to aliow the automated construction of
rules. rain{City) :- climate(City, ¢€) =
Rain(C), for example, indicates that the rainin a
city is described by the climate for that city. So a non-
probabilistic PROLOG term c<¢limate(miami,
tropical} would indicate that the probability of rain
in Miami, e.g. , rain (miami) , is a learnable distribu-
tion (which is the same for all tropical cities).

All the elements described above have been imple-
mented and tested. We are in the process of developing
other predicate types, including probabilistic logic predi-
cates. This is described in a preliminary form in the con-
cluding section. We next describe the inference mecha-
nism for the probabilistic language.

3 Inference

One of the simplest possible inference algorithms for Baye-
sian networks is the message passing algerithm known as
loopy belief propagation first proposed by Pear]l [1988].
This algorithm later had its effectiveness demonstrated by
Murphy et ol [1999] after the comnection between loopy
belief propagation and Turbo Codes was pointed out [McE-
liece et al., 1998]. In presenting our inference algorithm, we
take an approach similar to Murphy et al. [1999] who repre-
sent stochastic models as Markov fields rather than Baye-
sian networks,

In Kersting and De Raedt’s work, inference proceeds by
constructing an SLD tree (a selective literal resolution sys-
tem for definite clauses) and then converting it into a Baye-
sian network. We foilow a similar path, but we convert the
SLD tree to a Markov field instead. The advantage of our
approach is that the product distributions that arise from
goals that unify with multiple heads can be handled in a
completely natural way. The basic idea is that random vari-
able nodes are generated as goals are found. Cluster nodes
are created as goals are unified with rules. In a logic pro-
gram representing a Bayesian network, the head of a state-
ment corresponds to a child node, while the clauses in the
body correspond to the node’s parents as seen in Figure 1a.
To copstruct a Markov field, we add a cluster node between
the child and its parents as is illustrated in Figure Ib. If
more than one rule unifies with the rule head, then the vari-
able node is connected to more than one cluster node, which
results in a product distribution, as shown in Figure 2.

I

X, YV, 2

@ (b)

Figure 1: The transition of a piece of a Bayesian network
into an equivalent piece of a Markov random field. Note
that this generates a bipartite graph due to the addition of
the cluster node, the square node which is annotated with
the conditional probability diswibution P.

As a result of the addition of the cluster nodes, the
graphs that are generated for inference are bipartite as
shown in Figure 1b. There are two kinds of nodes in
these graphs, the variable and the cluster nodes. The
variable nodes hold distributions for the random variables
they define. The cluster nodes contain joint distributions
over the variables to which they are linked. Messages
between nodes are initially set randomly. On update, the
message from variable node V to cluster node C is the
normalized product of all the messages incoming to V
other than the message from C, In the other direction, the
message from a cluster node C to a variable node V is the
product of the conditional probability table (the local
potential) at C and all the messages to C except the mes-
sage from V. This product is marginalized over the vari-
able in V before being sent to V. This process, starting
from randem messages, and iterating until convergence,
has been found to be effective for stochastic inference
[Murphy et al., 1999].

D ROK

XrY;Z Pl a,b, P2
c,Zz
Z X, ¥ = P,
zZ a, b, ¢ = By

Figure 2: A product distribution is formed from two
tules. This is represented in the Markov network as two
cluster nodes attached to a single variable node.

The algorithm works by starting from a query {or pos-
sibly a set of queries) and generating the variable nodes
that are needed. Each query is matched agzinst all unify-
ing heads in the database. The resulting bodies are then
converted to new goals in the search., Qur current system
1s limited in that goals produced by this search must be
ground terms. Kersting and De Raedt [2000] place a
range restriction on variables in terms: a varizble may
appear in the head of a rule only if it also appears in the
body. As a result of this requirement, all facts entailed
from the database are ground. By contrast, we reguire
that all entailed goals be ground. We find that this re-
quirernent makes for better construction of useful models.

For the meta-predicates, the process proceeds simi-
larly. When a rule head in 2 meta-predicate is matched, a
standard PROLOG search is initiated on the body (be-
tween the : - and the | symbols) to instantiate their vari-
ables based on the pure PROLOG facts and rules in the
database. All such bindings are then used to create the
rules that are used in constructing the Markov random
fleld as described above.

4 Learning

To support learning, we expand the process of building
the Markov fields. When a cluster node is created that
has a learnable distribution, a new learnable node is cre-
ated (unless the appropriate node already exists). The
parameter estimation example of Section 2, a small data-
base based on the rule a (X} = A, is illustrated in Fig-
ure 3.

a(di}| |a(d2)| |a(d3)} | a(ds)] |al(d5)

a{%X) = A

Figure 3: The learnable node and the associated cluster
nodes that result from a learnable distribution with five
datapoints.

We do parameter estimation with a message passing
algorithm. Each learnable node is initially assigned a
random normalized distribution. The conditional prob-
ability table is the learnable node’s message to each of its
linked cluster nodes. When the node is updated, each
cluster node sends a message which is the product of all
messages coming into that cluster. These (unnormalized)
tables are an estimate of the joint probability at esach
cluster node. This is 2 distribution over all states of the
conditioned and conditioning variables. The learnable

node takes the sum of all these cluster messages. The
result is then converted to a normalized conditional prob-
ability table.

By doing inference (loopy belief propagation) on the
cluster and variable nodes, we compute the message for
the learnable nodes., Applying the propagation algorithm
until convergence yields an approximation of the ex-
pected values. This is equivalent to the Expectation step
in the EM algorithm. The averaging that takes place over
all the clusters gives 2 maximum Iikelihood estimate (the
M step) of the parameters in a learnable node. Thus, al-
lowing convergence in the variable and cluster nodes
followed by updating the learnable nodes and iterating
this process is equivalent to the fuil EM algorithm.

In the algorithm just described, we update all variables
synchronously. This is not necessary and may not even
be optimal. The nodes can be changed in any order, and
updates of cluster and variable nodes may be overlapped
with the updates of learning nodes. This iterative update
process gives a family of EM style algorithms, some of
which may be more efficient than standard EM [Demp-
ster et al., 1977] for certain domains. An algorithmic ex-
tension that this framework easily supports is the gener-
alized belief propagation of Yedidia et al. [2000].

5 Example 1: A Hidden Markov Model

We next present an example showing how to construct a
Hidden Markov Model (HMM) in our Bayesian logic.
Suppose we have two states {x, y}. The system can
start in either state, and at each time step, cycle to itself
or transition to the other state. The probability of these
events is a learnable distribution. In both states, the sys-
tem can output one of two symbols {a, b}. The condi-
tional distribution for these emissions is also represented
by an adjustable distribution,

state € {x,v}.
emit € {a,b}.

state(s(N)) | state(N) = State.
emit (N) | state(N) = Emit.

The Hidden Markov Model works as follows. We repre-
sent each state with an integer, that is zero or the succes-
sor of another integer. We have implemented integer
shorthand in our system, ie., 2 is shorthand for
s (s {0}). In the model, each state is conditioned on the
previous state with the learnable distribution State.
Each state emits its output with the learnable distribution
Emit.

Strictly speaking, these four lines of code are sufficient
to specify an HMM. We include the next five lines to
demonstrate the utility of several of our other extensions,
for example, the definition of the and predicate:

observed,o,and € {true,false}.

and{X,¥) | X,¥ =
[txue,false,false, falsel.

o{((],N) = true.
o{ [H|T] ,N) =
and (<emit (N)=H>,o(T,s (N})).

observed (L} = o(L,0).
Without these last five lines, one must specify an ob-

served sequence by including in the database a separate
fact for each emission that is seen. That is, one must state

emit (0} = a,emit (1) = b, emit(2) = b and
so on. With the additional five lines, three observations
can be included with the predicate ob-

served{{a,b,bl).

We can easily express a product of HMMs by adding a
new predicate to indicate the states of a second HMM.
This new HMM is coupled to the existing one through z
product distribution by using the same emit predicate.
Here is an example of a second HMM with three states:

statez ¢ {z,q,w}.
state2 (s(N)) | state2 (¥) = State2.
emit (N) | state2() = Emit2.

Note that the final line uses the previous emit predicate
which creates the product distribution. As a final com-
ment, our Janguage is far more general than is required to
create simple HMMs.

6 Example 2: Diagnosing Digital Circuits

In a more extended example, we consider the diagnosis
of combinatorial {acyclic) digital circuits. Assume there
is a database of circuits that are constructed from and, or,
and not gates and that we wish to model failures within
such circuits. We assume that each component has a
mode that describes whether or not it is working. The
mode can have one of four values. The component is ei-
ther good or has one of three failures: it is stuck with a
value of one, stuck at zerc, or intermittent, where the
output of the element is random. We assume that the
probability of the various failure modes is the same for
components of the same type, although this probability
may vary across types of components.

There are two questions that a probabilistic model can
answer, First, assume the probabilities of failure are
known. Given a circuit that isn’t working properly, and
one or more test cases (values for inputs and outputs), it
would be useful to know the probability for each compo-
nent mode in order to diagnose where the problem might
be. The second question comes from relaxing the as-
sumption that the failure probabilities are known. If there
is a database of circuits and tests performed on those cir-
cuits, we may wish to derive from these tests what the
failure probabilities might be.

We next provide code for this model. We use some
conventions for naming variables, We let Cid be a

unique ID for each circuit, and T be an ID for each dif-
ferent test, and N be an ID for a component of the circuit,
and Type be the component type (and, or, not), and I be
inputs {a list of Ns) for the component.

The first two lines of the code are declarations to de-
fine which modes a component can be in as well as indi- -
cating that everything else is boolean:

val, and, or, not € {v0, wvl}.
mode € {good, s0, s1, random}.

The mode and val statements provide the basic model
for circuit diagnosis. The first indicates that the prob-
ability distribution for the mode of any component is a
learnable distribution. One could put in a fixed distribu-
tion if the failure probabilities were known. Using the
term Mode (Type) specifies that the probabilities may
be different for different component types, but will be the
same across different circuits. One could indicate that the
distributions were the same for zll components by using
just Mode or that they differed across type and circuit by
using Mode (Type, Cid}. The second statement of the
two specifies how the possibility of failure interacts with
normal operation of a component. The val predicate
gives the output of component N in circuit Cid for test
Tid.

mode (Cid, N) :- comp{(Cid, N,
Mode (Type) .

Type, _) =

val{cid, Tid, N} :~
comp (Cid, N, Type, I)
mede (Cid, N), Type{cid, Tid, I) =
[[v0,v1], [v0,v0], [vl,v1],
((0.5,0.5],(0.5,0.51]1.

The and, or, and not predicates model the random
variables for what the output of a component would be if
it is working comrectly. The and and or are specified
recuzsively. This allows arbitrary fan-in for both types of
gates. The base case is handled by assigning a determi-
nistic value for the empty list (one for and, zero for or).
The recursive case computes the appropriate function for
the value of the head of the list of inputs and then recurs.
The not acts on a single value, inverting the value of the
input component.
and{_, _, [1) = wvi1.
and{Cid, Tid, [H|TI]) |

val{Cid, Tid, H), and(Ccid, Tigd, T) =
[{vo,vo], [vo,vil].

or(_, _, £} = vo.
or(cid, Tid, [H|T]) = wval(cid, Tig, H),
or (Cid, Tid, T} =

[{v0,v1], [v1,v1]].

not (Cid, Tid, N) | wval(cid, Tig, N) =
[v1i,/v0].
Figure 4 presents an example circuit. The following
four lines of code describe that circuit and the next three
lines a sample test input case.

Figure 4: A sample circuit which implements xor.

and, [1,2]}).
not, 3).
{1,2]11.
[4,51).

comp (1, 3,
comp (1, 4,
comp (1, 5, or,
comp (1, 6, and

val{l, 1, 1)
val(i, 1, 2)
val(l, 1, &)

vOo. % input 1
% input 2
= vG. % output 6 - wrong

.- H
<
i

Without a powerful stochastic modeling tool, it is a
non-trivial task to design a system that can diagnose
digital circuit failures as well as estimate failure prob-
abilities from a dataset of test cases. With our system, the
basic model can be constructed using oaly nine state-
ments. As the example shows, the representation of cir-
cuits and test data is transparent as well.

7 Conclusion

We have presented a new logic-based stochastic model-
ing language. We have applied a well-known effective
mference algorithm, loopy belief propagation, to this
language. This combination produces a first-order prob-
abilistic language with the ability to represent product
distributions effectively. We have also shown that learn-
ing 1s supported naturally within this framework.

In our view, each type of logic {deductive, abductive,
and inductive) can be mapped to elements of our loopy
logic language. The ability to represent rules and chains
of rules is equivalent to deductive reasoning. Probabilis-
tic inference, particularly from symptoms to causes, rep-
resents abductive reasoning. Finally, learning through the
firting of paramsters to known datasets is a form of in-
duction.

Some interesting extensions to our language are possi-
bie. For example, we plan to add continuous variables to
our langnage. Using continuous variables it may be pos-
sible to support decision theory in the same framework.
Furthermore, we would like to relax the constraint on
rules that requires all geals be ground, thus producing a
more expressive language. Finally, it may be interesting
to allow the construction of the Markov field to be inter-

leaved with the inference iterations, so that goals with an
infinite SLD tree can be approximated.

Acknowledgements

The authors gratefully acknowledge the support of Na-
tional Science Foundation under NSF grants 11S-9800929
and INT-9900485. The authors zlso thank Lance Wil-
liams, Terran Lane and Barak Pearlmutter for reviewing
earlier drafts of this paper.

References

[Dempster et al., 1977] A. P. Dempster, N. M. Laird, and D.
B. Rubin. Maximum -likelihood from incomplete data via
the EM algorithm. Jowrnal of the Royal statistical Society.
Series B (Methodological), 39, 1, 1-38, 1977.

(Friedman et al., 1999} N. Friedman, L. Getoor, D. Koller,
and A. Pfeffer. Learning probabilistic relational models,
Proceedings of the 16th Internarional Joint Conference on
Artificial Intelligence (IJCA4I), Stockholm, Sweden, 1999,
1300—1307, International Joint Committee on Artificial
Intelligence.

[Kersting and De Raedt, 2000] K. Kersting and L. De Raedt.
Bayesian logic programs. 44452000 Workshop on Learn-
ing Statistical Models from Relational Data, 2000. Ameri-
can Association for Artificial Intelligence.

[Mayraz and Hinton, 2000] G. Mayraz and G. Hinton. Rec-
ognizing hand-written digits using hierarchical products of
experts. Advances in Neural Information Processing Sys-
tems 13, 953-959, 2000.

[McEliece et al.,, 1998] R. McEliece, D. MacKay, and I.
Cheng. Tuwrbo decoding as an instance of Pearl’s ‘belief
propagation algorithm’, JEEE Jowrnal on Selected Areas in
Communication, 16(2), 140-152, 1998.

[Murphy et af., 1999] K. Murphy, Y. Weiss, and M. Jordan.
Loopy belief propagation for approximate inference: an
rmpirical study. Proceedings of the Fifieenth Conference on
Uncertainty in Artificial mtelligence, 467-475, San Fran-
cisco CA: Morgan Kaufmann, 1999,

[Ng and Subrahmanian, 1992] R. Ng and V. Subrahmanian.
Probahilistic logic programming. fnformation and Compu-
tarion, 101(2):150-201, 1992.

[Ngo and Haddawy, 1997] L. Ngo and P. Haddawy. An-
swering queries from context-sensitive knowledge bases.
Theoretical Computer Science, 171:147-177, 1997.

(Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, San Francisco
CA: Morgan Kaufmann, 1988.

[Yedidia et al, 2000] 1. Yedidia, W. Freeman, and Y.
Weiss. Generalized belief propagation. Advances in Neural
Information Processing Systems, 13, 689-695, Cambridge
MA: MIT Press, 2002.

